ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ХАРАКТЕРИСТИКИ

Электрический ток – это...

Условия существования тока

свободные электрические заряды; электрическое поле

Действия тока: тепловое,

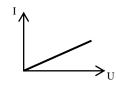
магнитное, химическое Направление тока:

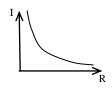
совпадает с направлением движения положительно заряженных частиц

Постоянный электрический ток - это...

Характеристики электрического тока:

СИЛА ТОКА – это	НАПРЯЖЕНИЕ – это	СОПРОТИВЛЕНИЕ – это
$I, \qquad \left[\frac{K\pi}{c} = amnep(A)\right]$	$U, \qquad \left[\frac{\mathcal{A}\mathcal{H}}{\mathcal{K}_{\mathcal{I}}} = вольm(B)\right]$	$\mathbf{R}, \qquad \left[\frac{B}{A} = O_{\mathcal{M}}(O_{\mathcal{M}})\right]$
$I = \frac{q}{\Delta t}$	$U = \frac{A}{q}$	$\frac{R = \rho \frac{l}{S}}{\rho - y \partial e^{7} b hoe conpomubaehue}$ вещества [Ом · м]
амперметр ————————————————————————————————————	вольтметр	омметр


Зависимость сопротивления проводника от температуры


 $\mathbf{R} = \mathbf{R}_0 \left(1 + \alpha \mathbf{t}' \right)$

 R_0 – сопротивление проводника при $0^{\circ}C$

 α – температурный коэффициент сопротивления; [$^{\circ}$ C⁻¹]

Закон Ома для участка цепи — формулировка... $I = \frac{U}{R}$

Виды соединения проводников

Последовательное соединение	Параллельное соединение	
R_1 R_2	R_1	
$I_o = I_1 = I_2$	$I_o = I_1 + I_2$	
$U_o = U_1 + U_2$	$U_o = U_1 = U_2$	
$R_o = R_1 + R_2$	$1/R_o = 1/R_1 + 1/R_2$	

Расширение пределов измерения амперметра и вольтметра

Шунт к амперметру	Добавочное сопротивление к вольтметру	
A		
$n = \frac{I}{I_a}$; $I = I_a + I_w$; $U_w = U_a$	$n = \frac{U}{U_v};$ $U = U_{\partial} + U_{v};$ $I_{\partial} = I_{v}$	
$R_{uq} = R_A/(n-1)$	$R_{\partial} = R_{V}(n-1)$	

Работа

$$A = Uq = IUt = I^2Rt = U^2t/R$$

[Дж = A B c]

электрического тока

A = Pt [кВт час]

$$P = A/t = IU = I^2R = U^2/R$$

$$[B_T = A B]$$

Если проводник неподвижен, то $A = \Delta U = Q \mid Q = I^2 Rt$

- закон Джоуля-Ленца