Основные ссылки

CSS adjustments for Marinelli theme

Глава 4. К портретам ученых

1. Галилео Галилей

Итак, папа римский решил вновь открыть «дело» Галилея. Я предвижу волну полемических статей и экскурсов в историю. Исключениями из хора обычных политико-литературных стенаний должны стать выступления непосредственно заинтересованных кругов: физиков и представителей церкви.

Кем же был Галилей и какое значение должен иметь пересмотр его дела? За редкими исключениями, тщетными были бы поиски категорий людей, хуже физиков информированных в истории науки вообще и в истории Галилея в частности.

Такое положение в данном случае не должно нас удивлять. Мы говорим не о реальном человеке, а имеем дело с человеком-знаменем, с неким символом. Одни объявили Галилея героем движения против учения Аристотеля, знаменосцем науки в борьбе против темных сил религии, и в то же время другие пытались возвести его самого в ранг святого. Однако при ближайшем рассмотрении окажется, что Галилей был прежде всего гениальным человеком, величайшая заслуга которого состояла в открытии эры современной науки и преодолении старого, аристотелева, представления о Вселенной.

Хотя Галилей и стоял у истоков современной физики, он все же не был свободен от некоторых очень живучих предвзятых представлений. Так, он не придавал особого значения законам Кеплера и продолжал считать движение по окружности «совершенным», в чем следовал старым взглядам Аристотеля.

Галилей вовсе не был человеком непогрешимым и всегда корректным и во взаимоотношениях с другими учеными. Так, в своей полемике с иезуитами о происхождении комет он был совершенно не прав, когда с некоторым высокомерием настаивал на том, что речь идет всего лишь о процессах испарения, происходящих в верхних слоях атмосферы. Судя по всему, можно считать установленным, что за несколько месяцев до того, как Галилей официально объявил об обнаружении солнечных пятен, их наблюдал монах из Ингольштадта; поведение Галилея при этом только способствовало усилению ненависти к нему иезуитов.

Разумеется, черты характера Галилея ни в коей мере не оправдывают серьезной исторической ошибки, какой является процесс над ним; они могли лишь послужить поводом, побудившим нищих духом людей принять решения, оказавшие глубоко отрицательное влияние на все дальнейшее развитие культуры. Здесь мы сталкиваемся с другим аспектом процесса. Лично я не убежден в том, что суд над Галилеем нужно рассматривать только в рамках обычного противопоставления Веры Разуму, Прогресса Мракобесию и т.д.

Некоторые служители церкви тогда уже приняли систему Коперника и довольно непредвзято, хотя и с осторожностью относились к научным открытиям. В то же самое время эти люди сознавали, какую угрозу представляли новые идеи для господствовавшего порядка и мировоззрения, основанного на средневековой схоластике и канонизированном учении Аристотеля. Скорее всего, Галилей не сознавал революционное – причем не только и не столько с точки зрения культуры, сколько с точки зрения идеологии – значение своей научной деятельности. Но тот факт, что он решил опубликовать свои труды на общедоступном, понятном языке, а не на латыни, был воспринят церковью как провокационный жест, имевший целью распространение новой культуры в массах.

Таким образом, процесс над Галилеем представлял собой не только столкновение двух противоборствующих философий, но и акт мести. Вероятно, можно было бы избежать этого политического столкновения или смягчить его последствия, если бы Галилей поступал более осмотрительно. Во всяком случае я не вижу, как предложение церкви реабилитировать ученого может оказаться чем-нибудь иным, кроме как жестом чисто символическим.

Итак, какой же будет реакция ученых на пересмотр дела Галилея? Я не претендую на то, чтобы представлять своих коллег и высказываю только свое личное мнение. Откровенно говоря, мне кажется, что предложение пересмотреть дело явно запоздало. Если речь идет о попытке завоевать поддержку среди определенных кругов интеллигенции, то она обречена на провал и не устранит существующего недоверия к церкви. Во всяком случае, «антипроцесс» имеет четко выраженный политический оттенок, так же, как и сам процесс, на котором был осужден Галилей. Пересмотр дела Галилея мог бы еще иметь какой-то смысл не сейчас, а несколько десятилетий назад, в иной интеллектуальной и политической обстановке. Впрочем, может быть, лучше поздно, чем никогда.

2. Джеймс Кларк Максвелл

В 1879 г. скончался шотландец Дж.К. Максвелл, создатель электромагнитной теории света и один из основателей современной физики и техники. Физики считают Максвелла одним из «великих», самобытным мыслителем, внесшим фундаментальный вклад во все области физики.

Максвелл не пользовался особой известностью при жизни; его уравнения были написаны языком, непонятным для современников. В частности, Фарадей, будучи гением эксперимента, но несведущим в математике, никогда не придавал значения работам Максвелла. В чем же состоит вклад Максвелла в науку? В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна. Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.

В 1700 г. Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых.

Можно сказать, что в 19 в. волновая природа света была окончательно установлена. Серия статей, опубликованных Максвеллом в середине столетия, ознаменовала собой начало большой и сложной работы по созданию математической теории электромагнитных явлений. По мнению Максвелла, должна была существовать бесконечно упругая и легкая среда, называемая эфиром, в которой свет распространяется подобно тому, как звук распространяется в воздухе. В своих заключительных расчетах Максвелл развил механистическую модель, согласно которой электрическое и магнитное поля представляют собой местное нарушение состояния эфира.

В настоящее время эфир уже вышел из моды (хотя и не совсем), и его слишком «материальный» образ практически забыт. Вместо него остались уравнения электромагнитного поля, объясняющие и предсказывающие поразительное множество разнообразных явлений, среди которых достойное место занимает распространение света, описываемое с удивительной точностью. Спустя несколько десятилетий после смерти Максвелла Герц экспериментально доказал существование радиоволн, отличающихся от, света только длиной волны (длины световых волн меньше одной тысячной миллиметра, в то время как радиоволны имеют длины от одного миллиметра и выше). Наконец, Рентген открыл лучи, названные его именем и имеющие чрезвычайно малую длину волны, сравнимую с размерами атомов. Можно идти и дальше к еще меньшим длинам волн, вспомнить, например, о ?-лучах, испускаемых ядрами.

Если бы не было уравнений Максвелла, то теория относительности увидела бы свет значительно позже. Эйнштейн преклонялся перед Максвеллом и считал открытие электромагнитной природы света одним из наиболее выдающихся событий современной физики.

Однако не только теорией электромагнетизма интересовался Максвелл. В молодости ученый серьезно занимался небесной механикой; как мы уже говорили ранее, используя методы, которые вызывали восхищение Лапласа, Максвелл показал, что кольца Сатурна не могли быть ни твердыми, ни жидкими и что, скорее всего, они должны иметь структуру, подобную пене, состоящей из частичек, вращающихся вокруг планеты. (Этот вывод подтвердился во время недавнего визита космического зонда к Сатурну.)

Очерк Максвелла на эту тему был отмечен авторитетной премией Адамса.

Но это еще не все. Техника цветной фотографии и цветного телевидения основана на теории смешивания трех цветов, разработанной Максвеллом, и, хотя эта теория подвергалась неизбежным усовершенствованиям, она и сейчас служит основой различных технических приложений.

К приведенному списку следует добавить фундаментальный вклад Максвелла в кинетическую теорию газов. Окончательное доказательство существования атомов было приведено в знаменитой работе Эйнштейна, посвященной броуновскому движению и опубликованной в 1905 г. Но в середине 19 в., несмотря на успехи химии, весьма авторитетные физики (среди которых Мах, Оствальд и Кельвин) считали гипотезу атома феноменологической выдумкой, лишенной реальных основ. Такие возражения против атомов не помешали Максвеллу получить результаты на самом высоком уровне, которые открывали новые направления в физике. Согласно его модели, газ состоит из бесконечного числа движущихся атомов или молекул, которые непрерывно сталкиваются между собой. Если в какой-то момент времени мы могли бы измерить скорости атомов, то обнаружили, что они группируются вокруг некоторого среднего наиболее вероятного значения. Затем мы увидели бы, как атом, имеющий слишком большую скорость, при столкновениях с другими замедляется, подстраиваясь под общее движение, а неподвижный атом приводится в движение за счет непрерывных толчков. Состояние газа может быть охарактеризовано посредством этой средней скорости, а еще лучше с помощью средней кинетической энергии (энергии движения) атомов.

Максвелл был первым, кто понял, что эта средняя энергия может служить для строгого определения температуры газа, будучи пропорциональной ей. Чем сильнее нагревается газ, тем быстрее начинают двигаться его атомы. Теплота представляет собой неупорядоченное, хаотическое движение атомов; она не является свойством одного или нескольких атомов, и, чтобы говорить о теплоте, бессмысленно рассматривать отдельный горячий атом, а нужно иметь огромное множество атомов (в одном литре число атомов выражается числом с 23 значащими цифрами). Непрерывно охлаждая газ, мы ограничиваем движение атомов, пока оно не прекращается совсем при абсолютном нуле температуры.

Кинетическая теория газов оказалась фундаментом, на котором была построена термодинамика; она также породила статистическую механику, в которую существенный вклад внесли Гиббс, Больцман и Эйнштейн.

В прошлом столетии Кельвин пользовался очень высоким авторитетом, сравнимым с авторитетом самого Ньютона, и, во всяком случае, он был гораздо более известен, чем Максвелл. Спустя сто лет они поменялись местами: физики редко ссылаются на Кельвина (разве только когда речь идет о температуре, отсчитываемой от абсолютного нуля и измеряемой в градусах Кельвина), в то время как исключительное положение Максвелла не вызывает сомнения.

3. Альберт Эйнштейн

Если для Ньютона 1666 г. был годом исключительным, то для Альберта Эйнштейна таким был 1905 г., когда неизвестный в то время служащий патентного бюро в Берне меньше чем за восемь недель опубликовал три фундаментальные работы, которые легли в основу современной физики.

Альберт Эйнштейн родился 14 марта 1879 г. в г. Ульме, земля Баден-Вюртенберг. Вскоре его родители переезжают в Мюнхен, земля Бавария, где Эйнштейн провел детство и посещал школу до четырнадцати лет. Когда Эйнштейну исполняется пятнадцать, он едет в Швейцарию, где в течение года посещает гимназию и заканчивает среднюю школу. В дальнейшем Эйнштейн продолжает учебу в Цюрихском политехникуме, где одним из его учителей был Минковский. В этот период он проводит несколько месяцев в Милане, куда его привез отец, неудачливый предприниматель. Наконец, с 1902 г. Эйнштейн живет в Берне и работает экспертом патентного бюро. Здесь он одновременно с работой готовился к защите диссертации, состоявшейся в 1905 г.

Этот год оказался переломным для Эйнштейна и современной физики; в течение короткого промежутка времени он опубликовал свои фундаментальные работы по молекулярной физике (о броуновском движении), по теории относительности и о фотоэлектрическом эффекте. Став уже известным, Эйнштейн получает в 1909 г. предложение (и принимает его) занять кафедру в Цюрихском университете; в 1911 г. он переезжает в Прагу, а в 1912 г. снова возвращается в Цюрихский политехникум. В 1914 г. Эйнштейн приглашен в Берлин в качестве преемника Ван'т Хоффа в Прусской Академии наук, а также в качестве директора Института физики. В 1916 г., наконец, сформулирована общая теория относительности; эта исключительно оригинальная теория получила блестящее подтверждение во время полного затмения Солнца в 1919 г., когда было обнаружено отклонение световых лучей, идущих от звезд, под действием гравитационного поля Солнца, причем именно такое отклонение, какое предсказал Эйнштейн. Приход Гитлера к власти в Германии вынудил Эйнштейна переехать в Принстон, США. В 1955 г., находясь в зените славы, Эйнштейн скончался, не закончив работу над одним из последних вариантов теории, которая должна была объединить электромагнитные и гравитационные явления.

Для правильной оценки деятельности Эйнштейна, разумеется, нельзя ограничиваться простым перечислением дат из жизни и академических титулов ученого, так же как нельзя опираться на огромное количество устных рассказов и анекдотов об Эйнштейне. Поэтому мы остановимся, пусть даже поверхностно, на основных этапах той части его деятельности, которая имеет отношение к развитию современной физики.

Первая работа Эйнштейна, которую мы неоднократно упоминали, посвящена фотоэлектрическому эффекту. Чтобы понять всю ее важность, следует вернуться на несколько сотен лет в прошлое. В 18 в. широкое распространение имела теория, поддерживаемая авторитетом Ньютона. Согласно этой теории, свет состоял из мельчайших частиц (корпускул), испускаемых светящимися объектами. Волновая теория, предложенная Гюйгенсом в 1690 г., имела очень мало приверженцев, среди которых был математик Эйлер. В начале 19 в. Юнг, а впоследствии и Френель обнаружили, что два световых луча могут при определенных условиях складываться и взаимно уничтожаться, причем эти эффекты чередуются. Такое явление совершенно непонятно с точки зрения корпускулярной теории Ньютона, но вполне естественно, если свет имеет волновую природу. Что свет представляет собой явление электромагнитное, было показано в работах Максвелла (1864 г.). Однако, хотя уравнения Максвелла превосходно описывают всевозможные варианты распространения световых волн, они совершенно не способны, как ни странно, объяснить явления излучения и поглощения света.

Особенно таинственным казался во времена Эйнштейна так называемый фотоэлектрический эффект, открытый Герцем в 1887 г. Ультрафиолетовое излучение, падающее на металлическую поверхность в пустоте, может поглощаться атомами металла; излучение, передавая энергию электронам, выбивает их из металла. Свет представляет собой быстро колеблющиеся электрические и магнитные поля, как раз и вызывающие выход электронов из металла. Казалось бы, увеличение интенсивности света должно привести к увеличению средней энергии электронов. Однако, как ни странно, вылетающие электроны все имеют одинаковую энергию, хотя их число увеличивается.

Для объяснения этого явления Эйнштейн выдвинул гипотезу квантов света (названных впоследствии фотонами), согласно которой световое излучение существует в виде квантов, энергия которых принимает дискретные значения h?, гдеh – постоянная Планка, а ? – частота света.

Если атом поглощает фотон, то энергия последнего идет на преодоление некоторого заданного энергетического барьера (энергии связи), чтобы оторвать электрон от атома, и на сообщение ему энергии для вылета из металла. Следовательно, энергия вылетевшего электрона зависит только от частоты падающего излучения.

Согласиться с существованием фотона означало возвратиться к дискредитированной корпускулярной теории Ньютона, и поэтому работа Эйнштейна была воспринята крайне сдержанно. Миликен впоследствии вспоминал, что он «в 1915 г. был вынужден полностью признать (на основе эксперимента) справедливость вывода Эйнштейна, несмотря на кажущуюся его неразумность, связанную с тем, что он, казалось бы, опровергал все, что мы знали о волновой природе света». Почти восемнадцать лет, несмотря на свой успех, Эйнштейн был единственным, кто действительно считал гипотезу фотона справедливой; полемика на эту тему наконец прекратилась, когда в 1923 г. был открыт эффект Комптона, состоящий в том, что фотон сталкивается с электроном и сообщает ему энергию отдачи (точно так же, как при столкновении бильярдных шаров). Гипотеза квантов света оказалась решающей для построения квантовой механики, и, хотя Эйнштейн не был одним из ее непосредственных создателей, его можно считать их предшественником.

Свидетельством поразительной творческой активности Эйнштейна явилось появление всего через несколько недель после опубликования первой работы новой, посвященной броуновскому движению. В 1828 г. английский биолог Роберт Броун собирал пыльцу различных растений, которую он хранил в ампулах в виде жидкой суспензии. Под микроскопом зернышки казались подверженными непрерывному и длившемуся бесконечно действию какой-то беспорядочной силы. Предлагались различные объяснения этого явления, в том числе основанные на представлении о «живой» воде!

Растительное происхождение пыльцы не имеет никакого отношения к природе описанного явления. Эйнштейн в своей работе количественно показал, что в основе броуновского движения лежат непрерывные столкновения атомов жидкости с зернышками пыльцы. Дрожание, замеченное Броуном, являлось свидетельством атомной структуры вещества и беспорядочного движения атомов, предвосхищенного Максвеллом. Работа Эйнштейна запоздала для спасения Больцмана, морально искалеченного жесткой оппозицией школы Оствальда и Маха; тем не менее она ознаменовала собой окончательное признание существования атомов, которое нам уже кажется очевидным фактом. Трудно себе представить, что в конце прошлого века некоторые весьма авторитетные физические школы все еще отрицали этот факт.

Работа, посвященная броуновскому движению, представляет собой продолжение предыдущей и, по существу, тесно связана с фотоэлектрическим эффектом. В основе обоих явлений лежит теория флуктуаций. Если, например, подвесить в полости, заполненной излучением, зеркальце, то оно подвергнется непрерывным ударам фотонов, и его поведение также будет очень похоже на дрожание гранул пыльцы Броуна. На сходство этих явлений обратил внимание один Эйнштейн.

Третья работа Эйнштейна увидела свет все в том же пророческом 1905 г., и она возвестила о рождении теории относительности. Мы уже обсуждали основы этой теории. Здесь мне хотелось бы напомнить, что говорил один из первых толкователей писем Эйнштейна эпистолог (но и физик также) Джеральд Холтон. По его словам, Эйнштейн необычайно тонко и ясно улавливал аналогии между физическими явлениями, казавшимися совершенно разными, и представлял те несовершенства или асимметрии, которые возникали, когда эти аналогии не соблюдались до конца.

Столкнувшись с несовершенством теорий, Эйнштейн сначала анализировал ее недостатки, затем привлекал для их устранения какие-то новые общие принципы и заканчивал работу, обращая внимание на некоторые экспериментально наблюдаемые эффекты, которые следовали из этих принципов.

При создании теории относительности неприятность заключалась в существовании выделенных систем отсчета, покоящихся относительно эфира, в которых скорость распространения света в любую сторону была равна 300000 км/с. В других системах отсчета скорость движения относительно выделенных должна была зависеть от направления движения, что неизбежно следовало из закона сложения скоростей Галилея.

Эйнштейн очень четко представлял себе, что симметрия между различными наблюдателями, даже находящимися в относительном движении, играет принципиальную роль, гораздо более важную, чем закон сложения скоростей, который может быть соответствующим удобным способом видоизменен. Для подавляющего большинства современников Эйнштейна справедливым было обратное утверждение.

На самом деле свет при преследовании должен был все время уходить с неизменной скоростью, которая становилась таким образом универсальной постоянной, причем одной из важнейших в физике. С помощью простых интуитивных рассуждений, не требовавших привлечения сложной математики (не выходя за рамки действий с квадратными уравнениями и простого дифференцирования), Эйнштейн развязал узел сложных аномалий и парадоксов, затемнявших теорию электромагнитного поля.

Иногда утверждают, что до Эйнштейна теорию относительности открыли Лоренц и Пуанкаре; я охотно уступаю право дискуссии на эту интересную тему историкам науки. Лично я сказал бы, что в работе 1905 г. теория предстает перед нами во всем своем великолепии и открывает такие новые горизонты физики, какие даже не просматриваются в работах Лоренца. Речь, наконец, идет о новом научном методе, нашедшем применение при исследовании любых физических явлений, а не только электромагнитных.

В том же году Эйнштейн опубликовал небольшую работу, в которой на основе всего нескольких исходных предположений пришел к выводу об эквивалентности массы и энергии, выражаемой теперь уже знаменитой формулой E = mc2. Между тем научная общественность начинала интересоваться деятельностью Эйнштейна, не проявляя, правда, того единодушия, которого можно было бы ожидать. Кауфманн провел в 1906 г. некоторые опыты с целью проверки теории, называемой им теорией Лоренца-Эйнштейна, и в конце того же года заявил, что отсутствие определенных результатов в пользу теории ясно указывает на противоречие данной теории с экспериментом. Это были последние печально знаменитые слова, высказанные в таком духе!

Однако некоторые из «великих» (среди них был Планк) сознавали исключительную важность этих работ Эйнштейна, и он быстро обрел известность в научном мире.

За 1905 г. последовали годы тяжелой борьбы, которую Эйнштейн, по существу, вынужден был вести в двух направлениях. Во-первых, как мы уже упоминали, ему приходилось отстаивать свое представление о фотоне.

Второе направление борьбы было связано с созданием общей теории относительности, следующей естественным образом из специальной теории относительности при рассмотрении гравитационных полей. Подобные попытки развития теории предпринимались также Нордстремом и другими современниками Эйнштейна. Работа по построению этой теории отвлекала ученых от дебатов, захвативших весь мир физиков после создания модели атома Бором.

Наконец, после нескольких неудачных попыток увидел свет окончательный вариант теории 1916 г., обозначавший новую веху в науке и культуре нашего столетия.

В этой теории на современном математическом языке утверждаются некоторые простые физические принципы (как, например, принцип эквивалентности), имеющие в то же время поистине революционное значение.

Как было показано в этой работе, присутствие вещества определяет геометрию пространства таким же образом, как геометрические свойства пространства определяют движение вещества в нем.

Легко высказать приведенные слова, но гораздо труднее выразить их на практике с помощью соответствующих уравнений поля; для этой деятельности Эйнштейна очень полезным оказалось сотрудничество с математиком Марселем Гроссманом.

В 1917 г. Карл Шварцшильд получил решение уравнений поля Эйнштейна для массивного тела, имеющего сферическую симметрию. При этом он обобщил потенциал Ньютона и заложил основы теории черных дыр.

Столь же знаменателен интерес Эйнштейна к космологии. В опубликованной в 1917 г. статье он предложил модель Вселенной, в которой впервые упоминался космологический принцип. В то время из наблюдений мало что было известно о Вселенной; в частности, многие считали, следуя Шепли, что существует одна-единственная Галактика, наша, и. что все остальное – это туманности, содержащиеся в ней. Не принималось во внимание, что межзвездная пыль поглощает излучение, и поэтому размеры Галактики казались значительно больше действительных: оценки радиуса Галактики были завышены примерно на 300000 световых лет.

В конце концов введение в строй больших телескопов привело к подтверждению идеи Куртиса, согласно которой спиральные туманности – это такие же настоящие галактики, как и наша, но чрезвычайно отдаленные.

Итак, Вселенная заполнена десятками миллиардов галактик, разбросанных в беспорядке, хотя в большом масштабе они распределены равномерно.

Эйнштейн предвосхитил этот результат, но не смог предвидеть расширения Вселенной, к чему пришел намного позже, в 1929 г., Хаббл. По мнению Эйнштейна, Вселенная должна была быть стационарна и притяжение звезд должно уравновешиваться каким-то космическим отталкиванием, специально введенным в уравнения поля (эту ошибку признавал сам Эйнштейн, не боявшийся опровергать самого себя).

В начале 30-х годов приход Гитлера к власти сделал невыносимой атмосферу научных исследований в Германии; в то напряженное время Эйнштейн навсегда оставил эту страну. Еще подтверждение отклонения световых лучей вблизи поверхности Солнца, полученное в 1919 г. экспедицией с участием Эддингтона, принесло Эйнштейну широчайшую известность. Оказавшись в центре горячих споров политического характера, он вопреки своей воле был возведен в ранг глашатая истины. Теперь же ухудшение политической обстановки сделало необходимым переезд Эйнштейна в США, в Принстон, штат Нью Джерси, где он до конца жизни работал в Институте перспективных исследований.

Здесь Эйнштейн продолжал заниматься осуществлением своей мечты – созданием единой теории, которая объединила бы гравитационное и электромагнитное поля в одно гармоничное целое. По поводу этих попыток мы уже говорили достаточно. Нужно признать, что влияние эйнштейновских идей до сих пор сильно и недоступный пока мираж объединения манит современных физиков. Более того, за прошедшие полвека исследований активность в продвижении к окончательному синтезу возросла на основе глубокого обновления и расширения технических возможностей теории и эксперимента.

Наконец, нам остается проанализировать, как Эйнштейн относился к квантовой механике. К рождению квантовой механики привела деятельность не только одного исследователя, как было в случае теории относительности (с упомянутыми уже оговорками). Эйнштейн, однако, сыграл первостепенную роль и в создании квантовой механики. Дуализм волна – частица был понят лишь после открытия фотона; несколько «бесконечно далеко идущих» замечаний Эйнштейна, как говорил потом Шредингер, позволили ему построить свое знаменитое волновое уравнение, имея в качестве отправной точки работу Луи де Бройля. Остается любопытным историческим фактом то, что все три названных главных персонажа в истории создания квантовой механики отказались принять ее вероятностную интерпретацию, предложенную Борном. Эйнштейн резко выступал и против позиций Копенгагенской школы, считая квантовую механику только частью истины, не совершенной в своей основе. Он также полагал, что квантовая механика должна следовать из его будущих уравнений единого поля. Эйнштейн очень сдержанно относился к релятивистскому уравнению Дирака и, по сути, так и не принял современную теорию поля. Неопределенность квантовой механики его глубоко раздражала, и ее он также не принимал. Никакие доводы не могли разубедить его в том, что окончательная истина будет найдена в другом месте.

Как мы видим, Эйнштейн был человеком исключительно твердых убеждений, мыслящим совершенно независимо. Будь такая черта характера у другого человека, она могла бы иметь отрицательные последствия, а в другую историческую эпоху – привести к беде. Только поразительная научная интуиция позволяла Эйнштейну с предельной стойкостью поддерживать идеи, не имевшие в то время признания, но которые впоследствии приводили к перевороту в современной физике. Утверждение квантовой механики еще не означает, что в науке уже сказано последнее слово, будущее может преподнести нам всякие сюрпризы.

Слава, пришедшая к Эйнштейну, не уничтожила его чувство меры, присущую ему скромность. Хотя он наверняка сознавал, какое значение имели для научного мира его идеи, он всегда реалистически смотрел на вещи. Чувство юмора, никогда его не оставлявшее, спасало его от самомнения, охватывавшего других людей, ставших знаменитыми за гораздо менее значительные заслуги.

Мне самому не выпало счастья лично встречаться с Эйнштейном; когда в 1955 г. я впервые оказался в Принстоне, он был, увы, уже близок к смерти. Некоторые из его бывших сотрудников недавно вспоминали в Принстоне совместно прожитые годы и длинный путь, пройденный ими в направлении к объединенной теории. По воспоминаниям, Эйнштейн был личностью исключительно человечной; он никогда не использовал свою славу, чтобы навязать свое мнение, и всегда был на равных со своими собеседниками.

Исследование деятельности Эйнштейна только начинается, но тем не менее уже теперь ясно, что Альберт Эйнштейн останется в истории как один из величайших деятелей науки и культуры всех времен, сравнимый с Ньютоном и Галилеем. Он был и остается популярным и у молодежи, что представляет собой редкость в наш век ложных мифов и развращенных вкусов.

4. Курт Гедель

Австрийский математик Курт Гедель родился в Брно (Чехословакия) на двадцать семь лет позже Эйнштейна и получил физическое и математическое образование в Венском университете. Его научные интересы частично пересекались с интересами Эйнштейна. Скромный математик-одиночка Гедель, в зрелом возрасте также приехавший в Принстонский институт перспективных исследований, внес важнейший вклад в основы математики, настолько революционный, что раздвинул границы этой дисциплины и оказал существенное влияние на общее мировоззрение и культуру 20 века.

Обязательный школьный курс геометрии во многом повторяет «Начала» Евклида, появившиеся около двух тысяч Лет тому назад; в них приведены некоторые утверждения (аксиомы) относительно свойств точек и прямых линий в плоскости, из которых следует справедливость всяких полезных и важных геометрических предположений (теорем). Одна из аксиом Евклида утверждает, что через две точки проходит одна и только одна прямая линия; другая аксиома касается параллельных прямых и т.д. По своей природе аксиомы просты и недоказуемы, их справедливость принимается как нечто очевидное и не требующее доказательств. Интерес к деятельности Евклида вызван тем, что он сумел представить всю геометрию с помощью небольшого числа верных и основополагающих утверждений, выраженных весьма ясно и в лаконичной форме.

Успех метода Евклида побудил математиков последовать примеру великого грека в других разделах науки о числах. Один из этих математиков, житель Пьемонта Джузеппе Пеано, впервые дал формулировку арифметики, используя аксиомы, казавшиеся до смешного очевидными (существует нуль, за каждым числом следует еще число...), но на самом деле удивительно исчерпывающие. Однако ни сам Пеано, ни Гильберт и его школа, продолжившие работу, начатую пьемонтцем, не смогли доказать полноту и состоятельность аксиом Пеано, да и других подобных утверждений (я прошу прощения за предельно упрощенный рассказ о том интересном времени). «Полнота» указывает на то, что любая настоящая теорема арифметики может быть выведена из этих аксиом; «состоятельность» предполагает отсутствие парадоксов, когда могут быть выведены как некоторые утверждения, так и утверждения, противоположные им.

Какими были бы для математической мысли последствия успеха Гильберта и его школы? Если бы, как считал Гильберт, вся математика сводилась к системе аксиом, то эти последние можно было бы ввести в вычислительную машину, способную по нашему приказу напечатать любые утверждения, следующие из этих аксиом. При этом все возможные теоремы выдавались бы машиной, что делало бы работу математика бессмысленной, сводя ее к роли оператора вычислительного центра. Был бы создан математический робот, мы достигли бы вершины абстрактной логики и имели электронного оракула, способного ответить на любой вопрос.

Но, даже если отвлечься от затрат бумаги, необходимой для того, чтобы напечатать миллионы ненужных (хотя и верных) теорем, дойти до вершины все равно не удалось бы. Появившаяся в 1931 г. работа Геделя, произведя эффект разорвавшейся интеллектуальной бомбы, заставила фон Неймана прервать курс лекций в Геттингене, а Гильберта прекратить работу над своей программой. Гедель утверждал, что состоятельность и полноту какой-либо логической системы можно установить, погружая исходную систему в систему более развернутую. Правда, Гедель показал, что при этом проблема состоятельности и полноты становится более сложной из-за усложнения логического языка, что приводит к спирали усложнений, к нескончаемой логической эскалации. Именно это и происходит также, когда человеческий разум занят своим привычным делом – размышлением.

Машина, работа которой основана на аксиомах Пеано, окажется неспособной ответить на вполне определенную последовательность вопросов. Но каковы эти вопросы, Гедель не сообщает, Во всяком случае, можно предположить, что неразрешимой в геделевском смысле является следующая головоломка. Построим последовательность целых чисел, начинающуюся с любого целого числа, причем каждое последующее число должно быть равно половине предыдущего, если оно четное, или предыдущему, умноженному на три и сложенному затем с единицей, если это предыдущее число нечетное. Повторяя процедуру вычисления последующих чисел, мы в конце концов построим всю последовательность. Если начать с цифры 5, то мы получим следующую последовательность: 5, 16, 8, 4, 2, 1. Итак, мы пришли к единице. Оказывается, что независимо от числа, с которого начинается последовательность, мы всегда приходим к единице, хотя доказательства этого факта не существует. Возможно, это связано с нашей неспособностью найти его, но может быть, указывает на недостатки, присущие фундаментальным основам арифметики.

Результат, полученный Геделем, выходит за пределы узких рамок арифметики, оказывая влияние также на кибернетику. Немного времени спустя после открытия Геделя математик Тьюринг заметил, что все вычислительные машины могут быть заменены всего одним простейшим и даже очень медленным калькулятором, так как, если не ограничивать используемую память, такой калькулятор воспринимает программы произвольной длины и сложности. В принципе можно составить бесчисленное множество таких программ, но, к счастью, их можно объединить и хранить вместе и составить полный их перечень. Не все программы будут полезны, а из-за некоторых машина может даже входить в режим непрерывно и безостановочно повторяющихся вычислений. Если же все работает нормально, то в соответствии с приказами в программе машина в ответ на введенное в нее число печатает другое, т.е. производит вычисления: например, может напечатать квадрат какого-нибудь числа, удвоить его или вывести число, следующее за числом, введенным первоначально. В общем случае машина может вычислять невероятно сложные функции введенного в нее исходного числа.

По определению функции, вычисляемые «машиной Тьюринга», являются «вычислимыми», поэтому инструкции по их вычислению могут быть переданы разным машинам без опасения, что возникнут ошибки или неясности. Вместе с тем существуют функции, не поддающиеся вычислению, более того, они составляют подавляющее большинство, хотя трудно дать определение такой функции. Как ни странно, но пример невычислимой функции следует прямо из теории «машины Тьюринга». Присвоим значение «единица» целому числу, соответствующему нормально работающей машине; «нуль», напротив, будет соответствовать машине, вошедшей в режим безостановочных повторных вычислений. Таким образом мы задали невычислимую функцию, и доказательство этого повторяет доказательство, данное Геделем для логических систем. Зная эту функцию, мы можем сказать заранее, не прибегая к запуску в работу самой программы, остановится ли соответствующая машина или будет работать вхолостую.

Это не абстрактный вопрос: было бы очень удобно знать заранее, работает ли программа или нет, прежде чем запускать ее в машину. Результат Тьюринга подтвердил то, что уже чувствовали интуитивно пользователи машин, а именно, что нет способа определить с уверенностью, работает ли программа, кроме как испытать ее на практике.

Всегда ли остается неизвестной функция, не поддающаяся вычислению? Ответ Геделя прост: даже если вычислены первые сто или тысяча значений этой функции, мы все равно ничего не узнаем о том, как вычислить последующее значение, так что требуются человеческий разум и творческие усилия, чтобы выйти из жестких рамок программирования для вычислительной машины. Снова и снова мы убеждаемся в том, что вычислительная машина удивительно прилежна и вместе с тем столь же глупа: она выполняет вычисления, не думая, только по предварительно составленной подробной инструкции. Конечно, может оказаться, что когда-нибудь будут созданы новые, более умные роботы, подобные описанным в книгах Айзека Азимова.

Тем, кто упрекал Геделя в разрушении целостности фундамента математики, ученый всегда отвечал, что, по существу, основы остались столь же

незыблемыми, как и прежде, а его теорема просто привела к переоценке роли интуиции и личной инициативы в одной из областей науки, в той, которой управляют железные законы логики, оставляющие, казалось бы, мало места для указанных достоинств. Несмотря на уверения идеалистов, математика оказалась настоящим искусством, и достойный преклонения пример творческого служения этому искусству дал сам Гедель в своих холодных, написанных только по существу дела работах.