Основные ссылки

CSS adjustments for Marinelli theme

Вот она, моя «капсула»!

Глава вторая, в которой «капсула» обретает не только плоть, но и душу...

Быстрее крутить нельзя

Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в сто раз – дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.

Швейцарский гиробус проходил до остановки шесть километров. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не двадцать километров, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?

Чтобы пройти впятеро больший путь, гиробус должен запасать во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить число оборотов примерно в 2,24 раза. То есть нужно разогнать маховик гиробуса до шести-семи тысяч оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что нет.

Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.

До четырех-пяти тысяч оборотов в минуту маховик внешне ничем не меняется – если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при оборотах, близких к пяти тысячам в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?

Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать»

маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.

Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может быть достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика массой по полтонны (а маховики почему-то чаще всего разрываются на три части) способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел вверх, а уже падая вниз, еще раз пробил крышу.

Маховик гиробуса в момент разрыва обладал бы энергией, которой хватило бы для пробега машины километров на двенадцать – восемнадцать. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на одну треть, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые четыре – шесть километров, о которых упоминалось выше.

Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее его разрыв, если он приключится, и тем больший запас прочности понадобится, чтобы уберечь маховик от разрыва.

«А что, если изменить форму маховика? – подумал я. – Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»

Оказывается, специалисты уже пытались это сделать. По сравнению с кругом древнего гончара и впрямь получалось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, – диски «равной прочности». Как это ни удивительно, но энергии они могли накопить раза в два больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.

Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и от прочности! Математическое доказательство этого я дал позже, когда уже окончил институт, а пока по мере своих возможностей высчитал, что если с изменением формы с самой худшей на самую лучшую прибавка энергии незначительна, максимум в три раза, то, повышая прочность, можно во столько же раз увеличивать плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.

Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому и вынуждены были маховики играть вторую, если не третью, роль среди накопителей энергии...

Одним выстрелом – двух зайцев

Решение я нашел не сразу. Долго старался всякими хитроумными способами увеличить прочность маховика – ничего не выходило. Попытки уменьшить последствия разрыва надрезанием обода на мелкие части – чтобы осколки были поменьше размером, тоже ни к чему не привели. Я вспомнил, что так же надрезали корпуса гранат-лимонок, но безопаснее они от этого не стали. Напротив, осколков прибавилось, и граната увеличила убойную силу.

Помогли мне здесь, как это ни странно, занятия гиревым спортом. Чтобы укрепить кисти рук, мы клали на два крючка ломик и медленно наворачивали на него тоненький стальной тросик с тяжелой гирей на конце. Свитый из проволок, этот тросик никогда не рвался сразу, а всегда постепенно, проволочка за проволочкой. Разумеется, о высокой прочности стальных проволок и тросов из них я знал и раньше, но до сих пор это как-то не увязывалось в сознании с массивным маховиком. И вот теперь, когда заброшенный на антресоли тросик случайно попался мне на глаза, я чуть было не воскликнул: «Эврика!» – и решил: маховик нужно делать из троса!

Я взял кусок троса в метр длиной, зажал его посередине в кольцевом зажиме – оправке, а саму оправку посадил на вал. Получился хоть и необычный, но маховик. Такие маховики в дальнейшем были названы супермаховиками.

В чем преимущества супермаховика? Если вращать вал с оправкой и тросом в ней, то трос, как и обычный маховик, накопит кинетическую энергию. При этом частицы троса, стремясь двигаться по инерции, будут все сильнее растягивать его, пытаясь разорвать. Наибольшая нагрузка тут приходится на середину троса. При увеличении скорости сверх меры трос начнет рваться, но рваться по частям, по одной проволочке. А тоненькие проволочки не способны пробить даже легкий защитный кожух. Стало быть, супермаховик из троса разрывается безопасно!

Однако это еще не все. Дело в том, что огромная прочность проволочек троса дает возможность супермаховику накапливать значительные количества энергии. Если прочность стальной струны выше прочности монолитного стального куска раз в пять, то супермаховик из струны при прочих равных условиях накопит энергии во столько же раз больше, чем обычный маховик с той же массой. Но ведь условия-то совсем не одинаковые!

Обычный литой маховик, разорвавшись, способен наделать много разрушений, а разрыв супермаховика снаружи даже и не заметишь. Выходит, супермаховику не нужен слишком большой запас прочности, и его следует уменьшить примерно вдвое по сравнению с маховиком. То есть получается, что супермаховик из троса может накопить в каждом килограмме массы в десять раз больше энергии, чем обычный стальной маховик. И при этом его разрыв безвреден для окружающих! Эти качества, присущие именно супермаховику, – высокая плотность энергии и безопасность разрыва – приблизили его к «энергетической капсуле».

Несмотря на то, что я был необычайно рад моей находке, идея вращать трос «поперек себя» мне не очень нравилась. Такой трос, помещенный в кожух, оставит там много свободного места, он будет бесцельно взбаламучивать воздух, как пропеллер, затрачивая на это энергию. Да и разорваться подобный супермаховик может, в принципе, целиком – оторвавшаяся проволочка не мешает свободно рваться другим. А это совсем нежелательно.

Поэтому после недолгих раздумий я решил навивать проволоку, из которой изготовляется трос, на барабан, как на катушку. Но вскоре мне в голову пришла мысль, что вместо проволочек можно взять такую же по прочности тонкую стальную ленту, чтобы намотка была плотнее, а для надежности склеить витки ленты между собой. Получится супермаховик, напоминающий по виду обычный маховик, только накапливающий гораздо больше энергии. Я назвал его ободковым, так как вся лента здесь должна была навиваться по ободу барабана.

Разрыв ободкового супермаховика обещал быть уже совершенно безопасным. При превышении скорости вращения первой разорвется наиболее нагруженная внешняя лента, которая тотчас же прижмется к корпусу и автоматически затормозит супермаховик. Оторванную ленту можно будет приклеить снова – и супермаховик опять готов к работе. От первоначальной идеи вращающегося троса я без колебаний отказался.

Наверное, я не мог бы так сразу отбросить идею тросового супермаховика, если бы знал тогда, что американские специалисты будут свыше десяти лет разрабатывать такие маховики. Правда, спустя годы они, убедившись в неудобстве подобных конструкций, тоже перешли к ободковым супермаховикам.

Но идея идеей, а пробовать надо – вдруг что-нибудь не так? Начались мои хождения по свалкам вторсырья, химическим и хозяйственным магазинам, по знакомым, работающим на производстве. Наконец я стал обладателем ящика с поржавевшей стальной лентой, банки резинового клея и бутылки бензина. На заводе друзья выточили мне несколько дисков из текстолита, на которые я намеревался навивать ленту. И вот в одно из воскресений я упросил товарища помочь мне изготовить супермаховики.

Мы очищали поверхность ленты бензином, мазали клеем и навивали на диски. Лента часто соскакивала, резала нам руки, падала на пол, так что приходилось всякий раз вновь стирать с нее пыль, но работу мы все равно закончили. Перед нами лежали три супермаховика диаметром по 30 сантиметров. Внешние слои ленты мы закрепили тонкой стальной проволокой и нагрели супермаховики в духовке, чтобы клей окончательно высох.

Я рассчитывал испытать мои супермаховики на разрыв с помощью двигателя от пылесоса. Пылесосный двигатель очень скоростной, вал его делает 15...18 тысяч оборотов в минуту.

Надев супермаховик на вал двигателя и закрепив его там, я зажал двигатель в тисках и включил в сеть. Начался разгон супермаховика. Вибрации то нарастали – казалось, что диск уже срывается с оси, – то снова стихали. Скорость вращения увеличивалась, о чем можно было судить по изменяющемуся реву двигателя. Но вот рев стал постоянным по тону, и я понял, что разгон прекратился, а супермаховик остался цел. Дальше двигатель не «тянул» – супермаховик гнал воздух, как вентилятор, от него дуло ветром, вся мощность двигателя уходила на создание этого ветра. Я выключил двигатель. Супермаховик долго, наверное с час, еще вращался, проходя через те же полосы вибраций, что и при разгоне.

Когда впоследствии мне удалось все-таки разорвать мои супермаховики на специальном разгонном стенде, я узнал, что эти кустарные изделия в несколько раз превзошли по плотности энергии маховики гиробуса фирмы «Эрликон» – лучшие по тем временам.

Но самое главное – разрыв, как и ожидалось, не доставлял никаких неприятностей. Разорвавшийся виток ленты не пробивал даже тоненького, как консервная банка, кожуха. Я приклеивал такой виток клеем, обвивал слоем проволоки, и супермаховик снова готов к работе.

А результат был немалый – разрыв наступал при 30 000 оборотах в минуту, что соответствовало почти пятистам метрам в секунду скорости обода или плотности энергии около 0,1 мегаджоуля на килограмм массы. Супермаховик «ручной работы» одним махом обогнал по важнейшему показателю свинцово-кислотные аккумуляторы, совершенствование которых идет уже более ста лет!

Впрочем, это еще не означало, что найдена желанная «энергетическая капсула». Надо было доказать, что супермаховик может стать недосягаемым для других аккумуляторов по плотности энергии так же, как для них недосягаем по плотности мощности обычный маховик. Ведь раскрученный маховик способен развить любую, самую высокую мощность, если его достаточно сильно тормозить. И разогнаться он может практически мгновенно, поглощая при этом мощность хоть целой электростанции. Ни один из накопителей не в состоянии воспринимать и выделять энергию при такой высокой мощности, как маховик.

Далеко ли предел!

Действительно, где «потолок» повышения плотности энергии супермаховиков? Только ли прочность материала определяет его? Например, тяжелый чугун и легкий дюралюминий почти одинаково прочны. Из какого же материала выгоднее делать маховик, из легкого или тяжелого?

Как ни парадоксально, но расчеты показали, что из легкого. Оказывается, не просто прочность, а удельная прочность, то есть отношение прочности к удельному весу материала, определяет плотность энергии маховика.

Максимум, что мы можем «выжать» из стали, даже самой совершенной, – это 30...50 килоджоулей на килограмм, дальше маховик разорвется. А маховик из более легких титана, дюралюминия, магниевых сплавов при той же массе накопит до разрыва в полтора раза больше энергии. Неплохим материалом для маховиков являются пластмассы, особенно усиленные стеклонитью, так называемые стеклопластики. Тяжелые же материалы практически не годятся для маховиков. Медный маховик не накопит и десятой доли энергии стального, а свинцовый – и сотой доли энергии титанового или дюралевого маховика.

Раньше мне показалось бы абсурдным изготовление маховиков из дерева или бумаги. Теперь я узнал, что маховики из дерева, фанеры, бумаги, склеенной в несколько слоев, могут накопить больше энергии, чем такой же по массе стальной, и значительно дешевле его.

Например, плотность энергии маховиков из бамбука почти в десять раз выше, чем у стального, и достигает 0,3 мегаджоуля на килограмм. Приблизительно вдвое хуже, но все-таки очень высокие показатели у маховиков из березы, сосны, ели. Плохо только, что объем их слишком велик – дерево очень легко. Объем маховиков с одним и тем же запасом энергии бывает равным лишь при одинаковой их прочности. Выходит, маховики из бамбука, дюраля и чугуна, имеющие одну и ту же прочность, при равном запасе накопленной энергии одинаковы и по объему. Однако дюралевый маховик в 3 раза, а бамбуковый в 10 раз легче, чем чугунный. Это подтвердили как расчеты, так и испытания.

Совершенной неожиданностью для меня были данные, которые я вычитал о таких, казалось бы, хрупких материалах, как стекло и горный хрусталь. Оказывается, специально закаленное стекло, как и лучшая проволока, выдерживает 3 кН/мм2, а хрусталь и даже кварц еще прочнее – 10 кН/мм2. И это при втрое меньшей плотности, чем у стали. В результате маховик из плавленого и закаленного кварца способен накопить в килограмме массы до 5 мегаджоулей энергии, или в 150 раз больше, чем стальной маховик! То есть он уже вполне может стать «капсулой». Автомобилю массой в одну тонну для прохождения ста километров будет достаточно пятикилограммового супермаховика из кварца.

К сожалению, кварц слишком дорог, а разрыв его, как и стекла, опасен. Осколков тут, правда, не образуется, маховик мгновенно разлетается в пыль, но весь и сразу. Это хуже, чем взрыв такого же количества тротила, во всяком случае, энергии при разрыве маховика выделится больше.

А что, если монолитные стекло и кварц заменить волокнами, тончайшими нитями? Прочность у стеклянных и кварцевых волокон гораздо выше, чем у монолита. Например, тонкие волоконца из кварца во время испытаний показали прочность в 3...4 раза большую, чем у литого кварца, и в десять раз большую, чем у стальной проволоки. Супермаховик, навитый из такого волокна, даже с запасом прочности обеспечит плотность энергии в 5 мегаджоулей на килограмм.

Продолжая поиск, я выяснил, что необычайной прочностью обладают волокна из углерода. Да, да, из обычного угля, графита и даже алмаза, который по химическому составу – тот же углерод. И насколько алмаз прочнее мягкого графита, настолько же волокно алмазной структуры прочнее графитового. А ведь графит в виде волокна имеет ту же прочность, что и стальная проволока, при впятеро меньшей плотности! Маховик, навитый из графитового волокна, в 20...30 раз превзойдет стальной по плотности энергии, а навитый из алмазного волокна приобретет фантастическую энергоемкость – 15 мегаджоулей на килограмм!

Но пока цена такого материала тоже фантастическая, нить из него получить очень трудно – на сегодняшний день волоконца имеют длину всего в несколько микрон. Обнадеживает, однако, тот факт, что лет десять назад и графитовое волокно стоило весьма дорого, а теперь, когда его производство отлажено, из него делают даже лыжные палки. Поэтому можно надеяться, что и сверхпрочные волокна из алмаза скоро станут дешевыми, как уже подешевели, например, искусственно получаемые алмазы. Запасов же углерода, кварца, стекла в мире хоть отбавляй.

Итак, двадцать килограммов супермаховика для пятисоткилометрового пробега автомобиля! Это отличный результат для «капсулы». Но, как оказалось, прочностные возможности материалов еще далеко не исчерпаны.

Профессор А.В. Степанов из Ленинграда предсказал и рассчитал новые «сверхматериалы», как будто специально созданные для супермаховиков. По его мнению, можно так плотно «упаковать» атомы в кристалле углерода – в алмазе, что полученный «сверхалмаз» выдержит небывалую нагрузку – 400 кН/мм2. Но еще больших результатов следует ожидать от «плотноупакованного»... азота. Этот азот будет уже не газом, а металлом, с плотностью большей, чем у платины, – 25 т/м3. Предполагается, что он должен выдерживать нагрузку 2800 кН/мм2. Маховик из «плотноупакованного» азота достигнет плотности энергии, которую даже трудно вообразить, – 60 мегаджоулей на килограмм.

Иначе говоря, небольшой маховичок из «сверхматериала» – диаметром 30 сантиметров и толщиной 6 сантиметров – сможет обеспечить пробег автомобиля на расстояние 30 тысяч километров без подзарядки!

Это даже не «капсула», а «сверхкапсула», такой, пожалуй, пока и не надо. К тому же сверхматериалов, необходимых для ее создания, еще нет, хотя специалисты утверждают, что они появятся в ближайшем будущем. Во всяком случае, меня очень радовало то, что перспектив у супермаховиков стать настоящей «энергетической капсулой» сколько угодно и я не зря связал свои надежды с этим видом накопителя энергии.

Но пора было, что называется, спуститься с небес на землю и посмотреть, на что я со своей идеей «энергетической капсулы» могу рассчитывать сегодня. И вот к каким выводам я в результате пришел.

Имеющихся в промышленности материалов – стальных лент, проволок, стеклянных и кварцевых волокон, волокон из графита, бора, специального дешевого волокна – кевлара, идущего, кстати, на покрышки для автомобилей, – вполне достаточно для создания супермаховичных накопителей с плотностью энергии большей, чем у электроаккумуляторов. По другим полезным показателям – плотности мощности, КПД, долговечности, стоимости – супермаховики тоже намного превзойдут эти аккумуляторы.

«Заряжать» супермаховики можно с помощью обычного электродвигателя. Если требуется быстрая «зарядка», супермаховик нужно соединить с валом большого стационарного двигателя мощностью в сотни киловатт. Такой двигатель разгонит его за считанные минуты или даже секунды. А если время «зарядки» не регламентировано, то сгодится маломощный зарядный двигатель, который можно возить с собой на автомобиле и при необходимости подключать к электросети посредством шнура с вилкой, как мы включаем, например, пылесос.

То есть и по срокам «зарядки» супермаховики гораздо совершеннее электроаккумуляторов, которые, как известно, заряжаются часами. Кроме того, супермаховики воспринимают «зарядку» полнее, чем электроаккумуляторы, и стоимость накопленной в них энергии будет самая низкая по сравнению со всеми другими типами накопителей.

Теперь я уже мог со спокойной совестью работать над супермаховиками дальше, не опасаясь, что мои усилия пропадут впустую, а идея «энергетической капсулы» будет расценена как нереальная или преждевременная.

Чтобы выявить слабые и сильные стороны супермаховиков, я решил построить и испытать несколько образцов из ленты и проволоки. Казалось бы, взял ленту или проволоку, намотал на катушку – и готов супермаховик. Но не тут-то было. При создании супермаховиков я столкнулся со многими трудностями – расслоением ленточного витого обода, спаданием обода с центра – барабана, вибрациями при работе, закреплением последнего витка и другими. Какие хитроумные головоломки приходилось тут решать, я хочу показать на следующем примере.

Когда делаешь супермаховик из проволоки, навиваешь ее на катушку, один конец проволоки оказывается внутри, а другой обязательно выходит наружу. Это естественно – ведь им заканчивается намотка. Однако для супермаховика такой конец очень нежелателен – его негде крепить. Если скрутить конец с предыдущим витком, он этот виток размотает или порвет – каждый миллиграмм массы проволоки при вращении создает огромные силы, разрывающие ее. Самое лучшее было бы «подсунуть» наружный конец под первые витки, но как это сделать? Сначала такое казалось мне невозможным. И все-таки выход нашелся.

Я закрепил оба конца проволоки на катушке, состоящей из двух отдельных половинок на одном валу, и начал крутить эти половинки в разные стороны. Проволока стала навиваться на них как обычно, с той лишь разницей, что когда процесс намотки подошел к концу, оба свободных конца проволоки остались внутри, а последний внешний виток пришелся как раз посередине обмотки. Потом я пропитал обмотку супермаховика клеем и высушил.

Этот способ изготовления супермаховиков и другие найденные мною способы, а также ряд предложений по конструкциям супермаховиков были отмечены авторскими свидетельствами. Изобретения мои оказались более ранними, чем похожие на них зарубежные, авторы которых сделали их совершенно самостоятельно, ничего не зная о моих находках. Просто диву даешься, как одинаково могут думать люди в разных концах света!

Как отобрать энергию?

Шло время, в каждом килограмме моего самодельного супермаховика уже накапливалось больше энергии, чем в других аккумуляторах. И вот однажды я задумался: несомненно, что в будущем в супермаховиках удастся накапливать столько энергии, сколько ее, например, в летящем с космической скоростью метеорите, однако сможем ли мы «отбирать» эту энергию? Какие трудности здесь встретятся?

Первая же мысль была о подшипниках. Выдержат ли они столь высокие скорости вращения супермаховика? Существуют ли вообще подшипники, способные работать при таких скоростях?

Прежде всего я решил подсчитать скорости, которые могут быть у супермаховика на автомобиле. Для простоты взял супермаховик диаметром в один метр, что вполне годится и для автомобиля, и для автобуса, и для многих других машин.

Каждый материал для супермаховика способен выдержать лишь определенную окружную скорость (скорость на самом отдаленном от центра краю обода). При этом, оказывается, никакого значения не имеет диаметр супермаховика – так распорядилась природа. А прочность материала повышается пропорционально квадрату скорости точно так же, как возрастает и энергия.

Например, стальная лента выдерживала во время испытаний скорость 500 метров в секунду, а кевлар – 1000 метров; Отсюда и энергии в кевларовом супермаховике накапливалось в 4 раза больше, чем в таком же по массе ленточном. Если бы кевлар имел ту же плотность, что и сталь, то напряжения в нем при скорости 1000 метров в секунду были бы соответственно вчетверо больше напряжений в ленте, и супермаховик мог бы разрушиться. Но в действительности с ним ничего не случится. Ведь кевлар почти в пять раз легче стали, и удельная прочность у него значительно выше.

Итак, какие же обороты будут у стального и кевларового маховиков? Если поделить окружную скорость на радиус супермаховика, мы получим его угловую скорость, а по ней уже просто отыскать число оборотов как в секунду, так и в минуту. Ленточный супермаховик будет вращаться со скоростью 1000 радиан в секунду, что соответствует 160 оборотам в секунду, или 9 559 оборотам в минуту. Вращение кевларового супермаховика будет вдвое быстрее – около 19 тысяч оборотов в минуту.

Но ведь такую угловую скорость развивает двигатель даже обычного бытового пылесоса, и его подшипники прекрасно справляются с этим. Скорость вращения мощных газовых турбин бывает свыше 30 тысяч оборотов в минуту, а там есть подшипники, работающие в худших условиях, чем в супермаховике. В турбинах на подшипники действуют нагрев, сильные вибрации и другие отрицательные факторы, которые в супермаховике отсутствуют.

Сейчас есть подшипники, выдерживающие 100...150 и более тысяч оборотов в минуту, этого вполне хватило бы и для супермаховика из алмазного волокна. Если к тому же один подшипник вставить внутрь другого, то можно добиться вдвое большей скорости вращения, так как на каждый из них придется только половина общей скорости.

Хорошо бы, конечно, обойтись совсем без подшипников, ведь на их вращение с нагрузкой, тяжелым супермаховиком, тоже идет энергия, а она нам так дорога...

А что, если закрепить над супермаховиком кольцеобразный магнит, который будет воспринимать его силу тяжести? Правда, в этом случае супермаховик должен быть стальной. Чтобы получить тот же эффект с кевларовым, стеклянным и графитовым маховиками, надо вмонтировать в них подобный же магнит, взаимодействующий с первым. И лучше сделать так, чтобы магниты работали не на притяжение, а на отталкивание, тогда супермаховик сам «вывесится» на определенной высоте и в таком положении будет вращаться.

Нетрудно убедиться в этом, если взять два кольцевых магнита, например от старых динамиков из репродуктора, и надеть их на деревянную или любую другую немагнитную палочку одноименными полюсами друг к другу. Верхний магнит повиснет над нижним, и потребуется большая сила, чтобы сдвинуть их вместе.

Но все-таки и в такой магнитной подвеске нужны подшипники. Во-первых, супермаховик при тряске и толчках может «продавить» магнитную подвеску, достаточно мягкую. Во-вторых, постоянными магнитами нельзя полностью вывесить какое-нибудь тело: супермаховик здесь разгружен только от силы тяжести, а не от боковых сил. Подшипники будут лишь фиксировать подвеску, без нагрузки – ее ведь «нейтрализуют» магниты, – и энергии на их вращение потребуется немного.

Мои магнитные подвески были признаны изобретениями, и на них мне выдали авторские свидетельства.

Надо сказать, эти подвески производили огромное впечатление на тех, кто их видел. Одна из таких подвесок поддерживала супермаховик массой 7 килограммов и диаметром около полуметра. В ней были использованы 10 магнитов, каждый массой около 30 граммов и диаметром 3 сантиметра, и миниатюрные фиксирующие подшипники размером не больше таблетки. Показывая своим гостям устройство подвески, я как бы нечаянно подталкивал супермаховик, и он начинал медленно, со скоростью диска электропроигрывателя вращаться. Но если после выключения проигрывателя его диск через считанные секунды останавливается, мой супермаховик продолжал крутиться в течение всего разговора, и, казалось, скорость его не уменьшалась. Гости уже из принципа ждали час, другой, но супермаховик и не думал останавливаться, «Неужели это вечный двигатель?» – в изумлении спрашивали меня. «Подождите до утра, – отвечал я, – может, и остановится».

Судя по расчетам, такой супермаховик, раскрученный до скорости 30 тысяч оборотов в минуту, крутился бы до остановки многие месяцы! Да и этот срок можно было бы увеличить, если бы не фиксирующие подшипники, которые, несмотря на малый размер и ничтожные потери энергии в них, все же «подтормаживали» супермаховик.

А как вывесить супермаховик совсем без механического контакта в подшипниках? Надо проверить и такую возможность. Для этого подойдут большие кольца из диамагнетиков, – то есть из материалов, отталкивающихся от магнитов, например, из графита, – которые не дадут супермаховику «сваливаться» вбок. Кольца эти будут выполнять роль фиксирующих подшипников. Правда, они займут много места. Но если сам супермаховик изготовлен из графита?.. Над этим стоит подумать!

Чтобы «помочь» постоянным магнитам, можно установить еще и электромагниты. Как только супермаховик задумает «свалиться» вбок, это уловит специальный датчик и включит соответствующий электромагнит, который выправит положение. Такая система называется «следящей». С ее помощью советские ученые добились скорости вращения полностью вывешенного шарика в 800 тысяч оборотов в секунду или почти 50 миллионов оборотов в минуту!

Подвесив подобным образом маховик со значительной массой получим столь малое сопротивление, при котором разогнанный маховик будет вращаться до остановки десятки лет! Однако для этого в камере, где вращается маховик, необходимо создать высокий вакуум, иначе так называемые вентиляционные потери – потери из-за трения маховика о воздух – «съедят» весь запас энергии за считанные часы.

Интересно, что при вращении маховика в вакууме можно практически вообще избавиться от трения в опорах. Нужно подшипники маховика, изготовленные из вполне обычных материалов – графита, полиэтилена или на молибденовой основе, облучать потоком электронов. Это открытие принадлежит советским ученым, которые назвали его «эффектом аномально низкого трения», сокращенно – АНТ. Для облучения подшипников супермаховика достаточно миниатюрной «электронной пушки», наподобие электронно-лучевой трубки (кинескопа) телевизора, только в сотни раз менее сложной, крупной и мощной.

Тут возникает вопрос: а как же отбирать накопленную энергию через герметичную стенку вакуумной камеры? Ведь вал сквозь нее не пропустишь – никакие сальники и манжеты, как бы плотно они ни обхватывали вал, не смогут помешать доступу воздуха в камеру?

И все-таки есть способ вывести вал маховика наружу. Но для этого придется использовать не обычные уплотняющие устройства в виде сальников или резиновых манжет, а специальные, изготовленные из магнитной жидкости.

Магнитная жидкость – это коллоидный раствор тончайшего порошка феррита в керосине, масле, воде и любой другой жидкости.

Частицы феррита здесь настолько малы, что, выложив их цепочкой, мы на одном миллиметре длины уместили бы их сто тысяч штук!

Иначе и нельзя: если частички будут больше, раствор быстро осядет. Так, например, случается с крупномолотым кофе, размешанным в воде. Растворимый же кофе имеет очень тонкий помол и в воде превращается в стойкий коллоидный раствор. Поэтому и частицы феррита в магнитной жидкости, как правило, не крупнее частиц растворимого кофе.

Для того, чтобы надежно уплотнить стальной вал, нужно надеть на него кольцеобразный магнит, а зазор между магнитом и валом заполнить магнитной жидкостью. Теперь выведенный через стенку вакуумной камеры вал будет вращаться, не нарушая ее герметичности.

Я даже сделал модель для демонстрации действия магнитного уплотнения. В надутый прозрачный резиновый шар вставил заводную игрушку, ключ к которой через описанное магнитное уплотнение выходил из шара наружу. Сколько я ни заводил игрушку – уплотнение не пропускало воздуха.

Магнитные уплотнения необходимы, когда требуется именно механическое вращение вала супермаховика. Если же нам нужно получить от супермаховика электроэнергию, то дело проще. Устанавливаем внутри камеры вращения вместе с супермаховиком электрическую машину – генератор, а провода выводим наружу через герметические изоляторы. Подавая ток по проводам в машину, которая в этом случае будет работать в режиме электродвигателя, разгоняем супермаховик. Потом переводим машину в режим генератора, и она начинает выдавать нам электрический ток, отбирая энергию от супермаховика. Такой способ отбора энергии, пожалуй, наилучший. Ведь ток можно использовать для каких угодно целей – и для освещения, и для питания приборов, и для движения электромобилей.

Чтобы получить энергию в виде потока жидкости – например, масла под давлением для приведения в движение механизмов в шахтах, где электрическая искра способна вызвать пожар, – вместо электромашины в камеру вращения нужно поместить гидромашину. Она так же, как и электромашина, может работать в режиме двигателя, разгоняя супермаховик, и в режиме генератора – насосном режиме, качая масло энергией супермаховика. Разумеется, из камеры с супермаховиком будут выходить уже не провода, а трубочки, по которым потечет масло. Энергией потока масла можно приводить в действие гидродвигатели, гидроцилиндры, заряжать гидроаккумуляторы, о которых речь шла в самом начале книги.

Есть еще способ вывести энергию супермаховика наружу – посредством вращения его корпуса.

Допустим, нам понадобилось пробурить скважину, взять пробу грунта или проделать другую механическую работу на дне океана, на глубине около 5 километров, где давление воды огромно. В таких условиях очень трудно воспользоваться традиционными источниками энергии – двигателями и электроаккумуляторами. Действительно, двигателю нужен воздух, который, однако, с поверхности по трубке не подведешь – ее раздавит. Электрический кабель тоже не выдержит давления – будет пробой. Маховик же выделяет энергию непосредственно в виде вращения вала, без кабелей и труб. Он-то нас и выручит.

Конечно, помещать вращающийся маховик прямо в воду бессмысленно – его сразу же остановит сопротивление воды. Целесообразнее поступить следующим образом. Заключим маховик или, если нам надо много энергии, супермаховик в герметичную вакуумную камеру, лучше сферическую, чтобы она могла противостоять давлению. При этом закрепим его не в центре камеры, а сместив вниз. Супермаховик массой в несколько сот килограммов будет висеть, как маятник, стремящийся под воздействием гравитации сохранить свое наиболее низкое положение. Дальше все просто. Свяжем супермаховик понижающей механической передачей с камерой, и он станет вращать ее, только гораздо медленнее, чем вращается сам. Это очень напоминает бег белки в клетке-колесе. Белка выступает там как бы в роли супермаховика, а колесо – та же вращающаяся камера. Теперь мы можем отбирать энергию не от самого супермаховика, а от вращающейся, правда с меньшей скоростью, камеры.

К этой камере легко приделать любой инструмент – ковши, бур, фрезу – в общем, все, что надо. Когда камера встретит сопротивление (например, бур упрется в твердую породу), супермаховик начнет вращать ее с большим усилием. Но даже если бур и в этом случае не подастся, никакой поломки или аварии не произойдет. Супермаховик просто «заходит» по кругу внутри камеры, пока не уменьшат нагрузку.

Заряжаться – раскручиваться супермаховик сможет от вращения своей же камеры. Достаточно прикрепить прямо к ней, как к валу корабля, гребной винт, и она быстро закрутится во время спуска на дно за счет собственной тяжести и тяжести супермаховика.

Это супермаховичное «беличье колесо» и ряд других придуманных как мной самим, так и вместе с товарищами систем вывода энергии из вакуумной камеры были признаны изобретениями. Еще один шаг к «капсуле» сделан!

Что же удалось достичь? В супермаховике можно накопить огромную энергию, эту энергию несложно надолго «законсервировать», используя вакуумную камеру, магнитные подвески, быстроходные подшипники. Накопленная энергия выводится из вакуумной камеры, причем выводится в любом удобном для нас виде: в виде вращения вала или корпуса, в виде электрического тока, напора жидкости (масла). Но супермаховик, отдавая свою кинетическую энергию, постепенно останавливается. Отразится ли снижение скорости на работе «энергетической капсулы»?

Возможен ли «мягкий» маховик

Что касается супермаховиков, от которых энергия отбирается электрическим или гидравлическим путем, то тут все ясно. Электро-и гидроприводы можно регулировать «мягко», так, что «потребитель» и не догадается об изменении скорости супермаховика.

Особенно успешно регулируется гидропривод. Гидронасос состоит из нескольких поршеньков, приводимых в движение шайбой, к которой они шарнирно прикреплены. Шайба обычно наклонена таким образом, что за один ее оборот поршенек проделывает вместе с ней некоторый путь вверх-вниз. Уменьшив угол наклона шайбы, поставив ее почти параллельно поршенькам, ход поршеньков можно сделать едва заметным, с увеличением угла наклона увеличится и ход поршеньков. Такая регулировка позволяет менять скорость вращения вала от нуля до самой высокой.

Предположим, на автомобиле установлены обычный гидродвигатель и супермаховик с гидравлическим приводом, причем на супермаховике – регулируемый насос. Как будет производиться движение машины?

Сначала шайба насоса чуть наклоняется, в гидродвигатель подается немного масла, и он тихонько «трогает» автомобиль. По мере разгона шайба наклоняется все больше и больше, повышая мощность насоса, а стало быть, и скорость автомобиля. Если супермаховик только что «заряжен» и скорость вращения его высока, то можно ограничиться малым наклоном шайбы; если же скорость вращения основательно упала, то надо увеличить угол наклона, и скорость автомобиля не изменится. Конечно, когда шайба дойдет до предельного положения, регулировка будет уже неэффективна.

Обычно допускается снижение скорости вращения супермаховика вдвое, например с 12 до 6 тысяч оборотов в минуту. Но не следует думать, что и энергии его мы используем тоже половину. Так как при снижении скорости вдвое энергия супермаховика уменьшается в 22, то есть в четыре раза, соответственно мы получаем от него 3/4, или 75 процентов, всей энергии. Вот какой «глубокий» отбор полезной энергии можно произвести от маховичных накопителей.

Точно так же обстоит дело и с электроприводом, только роль шайбы здесь играет так называемое импульсное управление. Оно позволяет отбирать ток от генератора и передавать его двигателю не постоянно, а импульсами, различными по величине и по частоте. Пока супермаховик вращается быстро, импульсы могут быть меньше и реже, а если он сбавил обороты, импульсы должны быть больше и чаще.

Чтобы понять суть импульсного управления, можно взять любой электромотор, хотя бы домашний вентилятор, и включать его в сеть через каждую секунду с такой же продолжительностью включения. Лопасти вентилятора будут вращаться почти равномерно, однако с меньшей скоростью, чем если бы прибор был включен постоянно. Попробуем увеличивать паузы между включениями – вентилятор закрутится медленнее, станем их уменьшать – быстрее. При импульсном управлении импульсы тока подаются автоматически. Такое управление тоже обеспечивает 75-процентный отбор энергии от супермаховика.

Но как ни удобны электро- и гидроприводы, они все-таки сложны. КПД гидропривода – около 0,8...0,9, КПД электропривода поменьше. Их масса и стоимость велики. А главное – эти приводы не позволяют отобрать у маховика всю энергию, довести его до остановки. Почему же нельзя получить от маховика больше энергии?

Дело в том, что всякий привод хорошо работает только на какой-то одной скорости, такой, на которую он рассчитан. Если супермаховик сильно снижает свою скорость, то электрогенератор, соединенный с ним, дает слабый ток, а гидронасос – невысокое давление масла. Привод становится маломощным, КПД его падает. Вот потому-то оставшаяся в супермаховике четверть всей накопленной энергии, как правило, не используется совсем.

Сказанное относится к разгону автомобиля. А что происходит при его торможении? Ведь чтобы не потерять при этом кинетическую энергию автомобиля, нам надо перекачать ее в супермаховик.

Для привода безразлично, передавать ли энергию от супермаховика автомобилю или от автомобиля супермаховику. Поэтому на схемах обычно изображают автомобиль в виде супермаховика на одном валу привода, а супермаховик-накопитель – на втором. Так вот, электро- или гидропривод сумеет отобрать от автомобиля, как и от супермаховика, те же 75 процентов энергии, снизив его скорость лишь вдвое. А куда годится такое торможение, после которого автомобиль все еще движется, хотя и с половинной скоростью?!

И я стал придумывать привод, который смог бы «перекачивать» энергию автомобиля в супермаховик и наоборот практически полностью, – своего рода «энергетический насос», способный отбирать энергию от супермаховика до самой его остановки. Причем КПД этого привода-насоса должен быть выше, чем у любого другого типа привода.

Что и говорить, задача была не из легких. Но неожиданно мне повезло. Однажды, когда я сосредоточенно думал о приводе, мой взгляд упал на... магнитофон. Вот этот магнитофон, вернее, его» вращающиеся кассеты и натолкнули меня на правильное решение.

Для проверки мелькнувшей у меня мысли я изготовил специальные кассеты, где намотка начиналась почти от самого вала, и, поставив их на магнитофон, включил его в режиме перемотки ленты. В то время как кассета, на которой ленты было немного, тронулась с места, другая, полная кассета почти не повернулась. Затем, по мере намотки ленты на первую кассету, вторая разгонялась все больше и больше. Наконец, когда первая кассета наполнилась, ее скорость вращения стала едва заметной. Зато вторая кассета, с которой лента смоталась, вращалась очень быстро, совсем как разогнанный супермаховик.

Идея была найдена, далее следовала техническая работа. Не вдаваясь в подробности изготовления привода, скажу лишь, что ленту для него я взял такую же, какую использовал в супермаховиках, – стальную, толщиной 0,1 миллиметра и шириной 40 миллиметров.

«Магнитофонный» привод позволял передавать энергию от автомобиля супермаховику или, что одно и то же, от одного супермаховика другому почти без потерь – 99 процентов! При торможении автомобиля неподвижный супермаховик разгонялся, воспринимая без малого всю энергию автомобиля, доводя его практически до остановки, а затем разгонял неподвижный автомобиль примерно до той же скорости, что была у него до торможения. Сам супермаховик при этом останавливался.

Свое новое изобретение я назвал ленточным вариатором.

Хотя мой вариатор получился значительно легче, меньше и экономичнее любого другого привода для разгона и торможения машин, он работал как бы по заданной программе, всегда одинаково. Регулировать его надо было заранее, до пуска. А ведь автомобиль приходится тормозить и разгонять каждый раз по-другому, в зависимости от ситуации на дороге. Вот для метропоезда, движению которого почти ничего не мешает, ленточный вариатор, наверное, подошел бы. Для автомобиля же лучше поискать что-нибудь иное.

Чтобы полнее использовать энергию маховика, регулировать скорость его вращения без какого-либо привода, можно менять расположение массы в маховике, то есть либо отодвигать ее от оси вращения, либо приближать к ней. Всем известно, например, что в танцах на льду, чтобы завращаться быстрее, спортсмену надо сгруппироваться, «собрать» руки и плечи поближе к туловищу. Для замедления вращения ему следует, наоборот, раскинуть руки пошире, отодвинув тем самым часть массы подальше от оси вращения. Так и в маховике: если изготовить его части раздвижными, то при сдвигании масс к центру скорость вращения будет увеличиваться, а при раздвигании – уменьшаться. И это все при постоянном запасе энергии в маховике.

Задача создания «раздвижных» маховиков уже давно привлекает изобретателей. Однако большинство энтузиастов избирают неверный путь. Об этом можно судить хотя бы по тому, что на высоких оборотах их маховики отказываются работать.

Многие устройства – почти точное повторение раздвижного патрона токарного станка. Только грузы в них раздвигаются где винтами, где рычагами. Я уже говорил, что при вращении маховика его частицы, стремясь двигаться по инерции, то есть прямолинейно, а не по кругу, создают настолько большие усилия, что рвут монолитную сталь. А здесь все эти гигантские силы приходятся на винты, рычажки и другие «хлипкие» механизмы. Где им устоять? Поэтому и рвутся «раздвижные» маховики, не достигнув и десятой доли энергоемкости даже обычных маховиков. Авторы будто специально позаботились о размерах и массе осколков, заранее разрезав монолитный маховик на части и скрепив их непрочными связями.

Не лучше показали себя заливные и насыпные маховики. Такие маховики изготовляют полыми, в виде бочки, и для увеличения инертности заполняют водой, ртутью или даже дробью. Когда же нужно уменьшить инертность, заполнитель либо изымают из маховика, либо тем или иным способом «стягивают» к центру.

Но изобретатели не учитывают, что жидкость или дробь сами не несут своей нагрузки. Все усилия, связанные со стремлением «вырваться» из кругового движения, заполнитель перекладывает на тонкую стенку полого маховика. Жидкость, а тем более дробь при вращении создает в маховике давление в тысячи атмосфер (сотни мегапаскалей), которое без труда взрывает тонкостенный сосуд – маховик. Попытки сделать стенку толстой не приносят успеха – слишком мало остается места для жидкости и сосуд превращается в заурядный монолитный маховик.

Другой порок «заливных» маховиков заключается в очень малом КПД. При заливке жидкости на ходу почти половина кинетической энергии маховика переходит в тепло, так как жидкость тормозит маховик, а при изъятии жидкости из маховика теряется вся ее кинетическая энергия – ведь жидкость нужно как бы остановить, сделать неподвижной. Как же быть с изъятием жидкости, если она будет иметь колоссальное давление и сверхзвуковую скорость? Тогда ее никаким насосом не выкачаешь!

Вот если бы жидкость, дробь и прочие заполнители сами несли свою нагрузку да еще были очень прочны... А почему бы не применить в качестве заполнителя стальную ленту, ту, что идет на намотку супермаховика? Пусть она наматывается на вал в центре ленточного же супермаховика, понижая его инертность, и, наоборот, сматывается с вала, прижимается к внутренней поверхности ленточного обода, повышая инертность супермаховика. К тому же лента заполнитель сама несет свою нагрузку.

Вышел обычный ленточный супермаховик, в котором лента, однако, была склеена только на поверхности обода. Отходя от обода в виде двух или нескольких ответвлений, она дальше наматывалась уже без клея. Когда намотка достигла вала супермаховика, я закрепил на нем концы ленты. Сам супермаховик был посажен на этот вал свободно в подшипниках. Стоило теперь остановить вал – лента начинала навиваться на него, уменьшая инертность супермаховика. Скорость его вращения при этом увеличивалась.

Картина получалась парадоксальная – супермаховик никто не разгоняет, он предоставлен самому себе, и все же он разгоняется! И будет разгоняться до тех пор, пока вся энергия, накопленная в супермаховике, не перейдет в тонкий внешний слой и не разорвет его!

Это явление напоминает эффект кнута. При ударе об пол вся кинетическая энергия длинного кнута постепенно переходит в его кончик, поскольку центральные части, прикоснувшись в полу, останавливаются. Сосредоточившись в самом кончике, кинетическая энергия так сильно разгоняет его, что мы слышим резкий взрывообразный звук, а кончик кнута при этом нередко отрывается.

Практическая польза от саморазгоняющегося супермаховика очевидна – время от времени подразгоняя маховик его же энергией, мы обеспечиваем наивыгоднейшие условия работы привода, ведь супермаховик до выделения всей своей энергии вращается с постоянной скоростью. А чтобы отпущенный вал не раскручивался в обратную сторону, его надо связать с супермаховиком храповой муфтой, допускающей вращение только в одну сторону.

Соединив вал подобного маховика с машиной мы получим «мягкость» рабочей характеристики, ценнейшую для большинства машин. В чем выражается эта «мягкость»? При торможении вала обычного маховика или двигателя он не замедлится – таково свойство маховиков и многих других двигателей. Если мы затормозим вал слишком сильно, то либо он сломается, либо двигатель заглохнет. Рабочую характеристику в этом случае называют жесткой. Если же мы попытаемся остановить таким образом вал «мягкого» супермаховика, то он сперва подастся, замедлится. Потом мы почувствуем, что вал как бы набирает силу, – на него навиваются все новые и новые витки ленты, диаметр намотки растет, – и мы уже не в силах удержать его – вал прокрутится. Чуть отпустив вал, мы тем самым ослабим нагрузку, и вал раскрутится быстрее супермаховика, передавая ему лишние витки ленты.

«Мягким» супермаховиком можно производить, например, плавные торможения и разгоны машин. Он способен работать даже в режиме «часовой пружины», только в тысячи раз более энергоемкой. Правда, «заводить» такую пружину посложнее, чем обычную.

Мои конструкции «самонесущих» маховиков переменной инертности тоже были признаны изобретениями.

Пока что резервы супермаховиков далеко не израсходованы. Но это не означает, что их еще рано использовать. Уже сегодня супермаховик может дать огромную экономию энергии и горючего, повысить производительность машин, предотвратить загрязнение атмосферы, спасти от аварий.