Основные ссылки

CSS adjustments for Marinelli theme

МАТЕМАТИЧЕСКИЕ НАЧАЛА НАТУРАЛЬНОЙ ФИЛОСОФИИ

Определения

Определение I

Количество материи (масса) есть мера таковой, устанавливаемая пропорционально плотности и объему ее.

Воздуха двойной плотности в двойном объеме вчетверо больше, в тройном - вшестеро. То же относится к снегу или порошкам, когда они уплотняются от сжатия или таяния. Это же относится и ко всякого рода телам, которые в силу каких бы то ни было причин уплотняются. Однако при этом я не принимаю в расчет той среды, если таковая существует, которая свободно проникает в промежутки между частицами. Это же количество я подразумеваю в дальнейшем под названиями тело или масса. Определяется масса по весу тела, ибо она пропорциональна весу, что мною найдено опытами над маятниками, произведенными точнейшим образом, как о том сказано ниже1.

Определение II

Количество движения2 есть мера такового, устанавливаемая пропорционально скорости и массе.

Количество движения целого есть сумма количеств движения отдельных частей его, значит, для массы, вдвое большей, при равных скоростях оно двойное, при двойной же скорости - четверное.

Определение III

Врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения2.

Эта сила всегда пропорциональна массе, и если отличается от инерции массы, то разве только воззрением на нее.

От инерции материи происходит, что всякое тело лишь с трудом выводится из своего покоя или движения. Поэтому "врожденная сила" могла бы быть весьма вразумительно названа "силою инерции". Эта сила проявляется телом единственно лишь, когда другая сила, к нему приложенная, производит изменение в его состоянии. Проявление этой силы может быть рассматриваемо двояко: и как сопротивление и как напор. Как сопротивление - поскольку тело противится действующей на него силе, стремясь сохранить свое состояние; как напор - поскольку то же тело, с трудом уступая силе сопротивляющегося ему препятствия, стремится изменить состояние этого препятствия. Сопротивление приписывается обыкновенно телам покоящимся, напор - телам движущимся. Но движение и покой при обычном их рассмотрении различаются лишь в отношении одного к другому, ибо не всегда находится в покое то, что таковым простому взгляду представляется.

Определение IV

Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения.

Сила проявляется единственно только в действии и по прекращении действия в теле не остается. Тело продолжает затем удерживать свое новое состояние вследствие одной только инерции. Происхождение приложенной силы может быть различное: от удара, от давления, от центростремительной силы.

Определение V

Центростремительная сила есть та, с которою тела к некоторой точке, как к центру, отовсюду притягиваются, гонятся или как бы то ни было стремятся.

Такова сила тяжести, под действием которой тела стремятся к центру Земли; магнитная сила, которою железо притягивается к магниту, и та сила, каковою бы она ни была, которою планеты постоянно отклоняются от прямолинейного движения и вынуждаются обращаться по кривым линиям. Камень, вращаемый в праще, стремится удалиться от вращающей пращу руки и этим своим стремлением натягивает пращу тем сильнее, чем быстрее вращение, и как только ее пустят, то камень улетает.

Силу, противоположную сказанному стремлению, которою праща постоянно оттягивает камень к руке и удерживает его на круге, т. е. силу, направленную к руке или к центру описываемого круга, я и называюцентростремительной. Это относится и до всякого тела, движущегося по кругу. Все такие тела стремятся удалиться от центра орбиты, и если бы не было некоторой силы, противоположной этому стремлению, которая их и удерживает на их орбитах, то они и ушли бы по прямым линиям, двигаясь равномерно. Эту-то силу я и называю центростремительной. Брошенное тело, если бы силы тяжести не было, не отклонялось бы к Земле, а уходило бы в небесное пространство по прямой линии равномерно, если бы не было и сопротивления воздуха. Своею тяжестью оно оттягивается от прямолинейного пути и постоянно отклоняется к Земле в большей или меньшей степени, сообразно напряжению силы тяжести и скорости движения. Чем меньше будет отнесенное к массе напряжение тяжести и чем больше будет скорость, с которою тело брошено, тем менее оно отклонится от прямой линии и тем дальше отлетит.

Если свинцовое ядро, брошенное горизонтально силою пороха из пушки, поставленной на вершине горы, отлетит по кривой, ранее чем упасть на землю, на две мили, то предполагая, что сопротивления воздуха нет, если его бросить с двойною скоростью, оно отлетит приблизительно вдвое дальше, если с десятерною, то - в десять раз. Увеличивая скорость, можно по желанию увеличить и дальность полета и уменьшать кривизну линии, по которой ядро движется, так что можно бы заставить его упасть в расстоянии и десяти градусов, и тридцати, и девяноста, можно бы заставить его окружить всю Землю или даже уйти в небесные пространства и продолжать удаляться до бесконечности. Подобно тому как брошенное тело может быть отклонено силою тяжести так, чтобы описывать орбиту вокруг Земли, так и Луна или силою тяжести, если она ей подвержена, или же иною силою, которая влечет ее к Земле, может быть отклоняема от прямолинейного пути и вынуждена обращаться по своей орбите; без такой силы Луна не могла бы удерживаться на своей орбите3. Если бы эта сила была меньше соответствующей этой орбите, то она отклоняла бы Луну от прямолинейного пути недостаточно, а если больше, то отклонила бы ее более, чем следует, и приблизила бы ее от орбиты к Земле. Следовательно, надо, чтобы эта сила была в точности надлежащей величины. Дело математиков найти такую силу, которая в точности удерживала бы заданное тело в движении по заданной орбите с данною скоростью, и наоборот, найти тот криволинейный путь, на который заданною силою будет отклонено тело, вышедшее из заданного места с заданною скоростью.

В центростремительной силе различается три рода величин: абсолютная, ускорительная и движущая4.

Определение VI

Абсолютная величина центростремительной силы есть мера большей или меньшей мощности самого источника ее распространения из центра в окружающее его пространство.

Так, магнитная сила в зависимости от величины магнита или степени намагничивания может быть в одном магните больше, в Другом меньше.

Определение VII

Ускорительная величина центростремительной силы есть мера, пропорциональная той скорости, которую она производит в течение данного времени5.

Так, действие того же магнита более сильно на близком расстоянии, слабее - на дальнем, или сила тяжести больше в долинах, слабее на вершинах высоких гор и еще меньше (как впоследствии будет показано) на еще больших расстояниях от земного шара; в равных же расстояниях она везде одна и та же, ибо при отсутствии сопротивления воздуха все падающие тела (большие или малые, тяжелые или легкие) ускоряются ею одинаково.

Определение VIII

Движущая величина центростремительной силы есть ее мера, пропорциональная количеству движения, которое ею производится в течение данного времени.

Таким образом, вес большей массы больше, меньшей - меньше; для той же самой массы или того же самого тела вес больше вблизи Земли, меньше в небесной дали. Эта величина есть направленное к центру стремление всего тела, которое и называется его весом. Движущая сила распознается по силе, ей равной и противоположной, которая могла бы воспрепятствовать опусканию тела.

Для краткости эти величины сил можно называть силами движущими, ускоряющими и абсолютными, и для отличия - относить их к самим притягиваемым к центру телам, к месту тел и к центру сил, а именно: движущую силу - к телу, как стремление всего тела к центру, причем это полное стремление составляется из стремлений отдельных частиц тела; силу ускорительную - к месту тела в пространстве, как некоторую способность, распространенную центром на все места окружающего пространства и заставляющую приходить в движение тела, в этих местах находящиеся, абсолютную же силу - к самому центру, как заключающуюся в нем причину, без которой движущие силы не распространялись бы в окружающем пространстве; сказанною причиною может служить или какое-либо центральное тело (как,напр., магнит в центре сил магнитных или Земля в центре сил тяжести), или что бы то ни было иное, хотя бы и ни чем не обнаружимое. Эти понятия должно рассматривать как математические, ибо я еще не обсуждаю физических причин и места нахождения сил.

Таким образом, ускорительная сила6 так относится к движущей, как скорость к количеству движения. В самом деле, количество движения пропорционально скорости и массе, движущая же сила пропорциональна ускорительной и массе, ибо сумма действий ускорительной силы на отдельные частицы тела и составляет движущую силу его. Поэтому близ поверхности Земли, где ускоряющая сила тяжести для всех тел одна и та же7, движущая сила тяжести, или вес, пропорциональна массе тела. Если подняться в такие области, где ускоряющая сила тяжести будет меньше, то и вес пропорционально уменьшится; вообще вес будет постоянно пропорционален массе тела и ускоряющей силе тяжести. Так, напр., в тех областях пространства, где ускоряющая сила тяжести вдвое меньше, вес массы вдвое или втрое меньшей будет вчетверо или вшестеро меньше, нежели близ поверхности Земли. Далее я придаю тот же самый смысл названиям "ускорительные и движущие притяжения и натиски"8. Название же "притяжение" (центром), "натиск" или "стремление" (к центру) я употребляю безразлично одно вместо другого, рассматривая эти силы не физически, а математически, поэтому читатель должен озаботиться, чтобы, в виду таких названий, не думать, что я ими хочу определить самый характер действия или физические причины происхождения этих сил, или же приписывать центрам (которые суть математические точки) действительно и физические силы, хотя я и буду говорить о силах центров и о притяжении центрами.

Поучение

В изложенном выше имелось в виду объяснить, в каком смысле употребляются в дальнейшем менее известные названия. Время, пространство, место и движение составляют понятия общеизвестные. Однако необходимо заметить, что эти понятия обыкновенно относятся к тому, что постигается нашими чувствами. Отсюда происходят некоторые неправильные суждения, для устранения которых необходимо вышеприведенные понятия разделить на абсолютные и относительные, истинные и кажущиеся, математические и обыденные.

I. Абсолютное, истинное, математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно, и иначе называется длительностью.

Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

II. Абсолютное пространство по самой своей сущности, без относительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное: так, напр., протяжение пространств подземного воздуха или надземного, определяемых по их положению относительно Земли. По виду и величине абсолютное и относительные пространства одинаковы, но численно не всегда остаются одинаковыми. Так, напр., если рассматривать Землю подвижною, то пространство нашего воздуха, которое по отношению к Земле остается всегда одним и тем же, будет составлять то одну часть пространства абсолютного, то другую, смотря по тому, куда воздух перешел, и, следовательно, абсолютно сказанное пространство беспрерывно меняется.

III. Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным или относи тельным. Я говорю "часть пространства", а не положение тела и не объемлющая его поверхность. Для равнообъемных тел места равны, поверхности же от несходства формы тел могут быть и неравными. Положение, правильно выражаясь, не имеет величины, и оно само по себе не есть место, а принадлежащее месту свойство. Движение целого то же самое, что совокупность движений частей его, т. е. перемещение целого из его места то же самое, что совокупность перемещений его частей из их мест; поэтому место целого то же самое, что совокупность мест его частей, и следовательно, оно целиком внутри всего тела.

IV. Абсолютное движение есть перемещение тела из одного абсолютного его места в другое, относительное - из относительного в относительное же. Так, на корабле, идущем под парусами, относительное место тела есть та часть корабля, в которой тело находится, напр., та часть трюма, которая заполнена телом и которая, следовательно, движется вместе с кораблем. Относительный покой есть пребывание тела в той же самой области корабля или в той же самой части его трюма.

Истинный покой есть пребывание тела в той же самой части того неподвижного пространства, в котором движется корабль со всем в нем находящимся. Таким образом, если бы Земля на самом деле покоилась, то тело, которое по отношению к кораблю находится в покое, двигалось бы в действительности с тою абсолютною скоростью, с которою корабль идет относительно Земли. Если же и сама Земля движется, то истинное абсолютное движение тела найдется по истинному движению Земли в неподвижном пространстве и по относительным движениям корабля по отношению к Земле и тела по кораблю. <…>

Проявления, которыми различаются абсолютное и относительное движение, состоят в силах стремления удалиться от оси вращательного движения, ибо в чисто относительном вращательном движении эти силы равны нулю, в истинном же и абсолютном они больше или меньше, сообразно количеству движения. Если на длинной веревке подвесить сосуд и, вращая его, закрутить веревку, пока она не станет совсем жесткой, затем наполнить сосуд водой и, удержав сперва вместе с водою в покое, внезапным действием другой силы привести сосуд во вращение в сторону раскручивания веревки, то сосуд будет продолжать вращаться, причем это вращение будет поддерживаться достаточно долго раскручиванием веревки9. Сперва поверхность воды будет оставаться плоской, как было до движения сосуда. Затем сосуд силою, постепенно действующею на воду, заставит и ее участвовать в своем вращении. По мере возрастания вращения вода будет постепенно отступать от середины сосуда и возвышаться по краям его, принимая впалую форму поверхности (я сам это пробовал делать); при усиливающемся движении она все более и более будет подниматься к краям, пока не станет обращаться в одинаковое время с сосудом и придет по отношению к сосуду в относительный покой. Этот подъем воды указывает на стремление частиц удалиться от оси вращения, и по этому стремлению обнаруживается и измеряется истинное и абсолютное вращательное движение воды, которое, как видно, во всем совершенно противоположно относительному; движению. Вначале, когда относительное движение воды в сосуде было наибольшее, оно совершенно не вызывало стремления удалиться от оси - вода не стремилась к окружности и не повышалась у стенок сосуда, а ее поверхность оставалась плоской и истинное вращательное ее движение еще не начиналось. Затем, когда относительное движение уменьшилось, повышение воды у стенок сосуда обнаруживало ее стремление удалиться от оси, и это стремление показывало постепенно возрастающее истинное вращательное движение воды, и когда оно стало наибольшим, то вода установилась в покое относительно сосуда. Таким образом, это стремление не зависит от движения воды относительно окружающего тела, следовательно, по таким движениям нельзя определить истинно вращательное движение тела. Истинное круговое движение какого-либо тела может быть лишь одно в полном соответствии с силою стремления его от оси, относительных же движений в зависимости от того, к чему они относятся, тело может иметь бесчисленное множество; но независимо от этих отношений эти движения совершенно не сопровождаются истинными проявлениями, если только это тело не обладает, кроме этих относительных, и сказанным единственным истинным движением. Поэтому в тех системах мира, в которых предполагается, что наши небесные сферы обращаются внутри сферы неподвижных звезд и несут с собою планеты, окажется, что отдельные части этих сфер и планеты, покоящиеся относительно своих сфер, на самом деле движутся, ибо они меняют относительное положение (чего не может быть для тел, покоящихся абсолютно); вместе с тем они участвуют в общем движении несущих их сфер и, значит, как части вращающегося целого, стремятся отдалиться от оси.

Таким образом, относительные количества не суть те самые количества, коих имена им обычно придаются, а суть лишь результаты измерений сказанных количеств (истинные или ложные), постигаемые чувствами и принимаемые обычно за самые количества. Если значение слов определять по тому смыслу, в каком эти слова обычно употребляются, то под названиями "время", "пространство", "место" и "движение" и следует разуметь эти постижимые чувствами меры их.

Речь стала бы совершенно необычной и чисто математической, если бы под этими названиями разуметь действительно сами измеряемые количества. Поэтому воистину насилуют смысл священного писания те, кто эти слова истолковывают в нем как самые количества. Не менее того засоряют математику и физику и те, кто смешивает самые истинные количества с их отношениями и их обыденными мерами.

Распознание истинных движений отдельных тел и точное их разграничение от кажущихся весьма трудно, ибо части того неподвижного пространства, о котором говорилось и в котором совершаются истинные движения тел, не ощущаются нашими чувствами. Однако это дело не вполне безнадежное. Основания для суждений можно заимствовать частью из кажущихся движений, представляющих разности истинных, частью из сил, представляющих причины и проявления истинных движений. Так, если два шара, соединенные нитью на данном друг от друга расстоянии, будут обращаться около общего их центра тяжести, то по натяжению нити можно будет узнать стремление шаров к удалению от оси вращения и по нему вычислить угловую его скорость. Если затем на противоположные стороны шаров заставить действовать равные силы, так чтобы они или увеличивали или уменьшали круговращательное движение, то по увеличившемуся или по уменьшившемуся натяжению нити может быть обнаружено увеличение или уменьшение скорости движения, и таким образом можно будет найти те стороны шаров, к которым надо приложить силы, чтобы увеличение скорости движения стало наибольшим, и значит, найти те стороны шаров, которые обращены по направлению движения или по направлению, ему обратному. Когда эти передние и задние стороны будут найдены, то движение будет вполне определено.

Таким способом могло бы быть определено количество и направление кругового движения внутри огромного пустого пространства, где не существовало бы никаких внешних доступных чувствам признаков, к которым можно было бы относить положения шаров. Если бы в этом пространстве, кроме того, находились бы еще некоторые весьма удаленные тела, сохраняющие относительно друг к другу положения, подобно тому как наши неподвижные звезды, то по перемещению шаров относительно этих тел мы не могли бы определить, чему принадлежит это перемещение - телам или шарам. Но если бы мы, определив натяжение нити, нашли бы, что это натяжение как раз соответствует движению шаров, то мы бы заключили, что движение принадлежит шарам, а не внешним телам, и что эти тела находятся в покое. Таким образом по видимому перемещению шаров относительно внешних тел мы вывели бы их движение. Нахождение же истинных движений тел по причинам, их производящим, по их проявлениям и по разностям кажущихся движений и, наоборот, нахождение по истинным или кажущимся движениям их причин и проявлений излагаются подробно в последующем. Именно с этою-то целью и составлено предлагаемое сочинение.

Аксиомы или законы движения

Закон I

Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.

Брошенное тело продолжает удерживать свое движение, поскольку его не замедляет сопротивление воздуха и поскольку сила тяжести не побуждает это тело вниз. Волчок, коего части, вследствие взаимного сцепления, отвлекают друг друга от прямолинейного движения, не перестает вращаться (равномерно), поскольку это вращение не замедляется сопротивлением воздуха. Большие же массы планет и комет, встречая меньшее сопротивление в свободном пространстве, сохраняют свое как поступательное, так и вращательное движение в продолжении гораздо большего времени.

Закон II

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует10.

Если какая-нибудь сила производит некоторое количество движения, то двойная сила произведет двойное, тройная - тройное, будут ли они приложены разом все вместе, или же последовательно и постепенно. Это количество движения, которое всегда происходит по тому же направлению, как и производящая его сила, если тело уже находилось в движении, при совпадении направлений прилагается к количеству движения тела, бывшему ранее, при противоположности - вычитается, при наклонности - прилагается наклонно и соединяется с бывшим ранее, сообразно величине и направлению каждого из них.

Закон III

Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

Если что-либо давит на что-нибудь другое или тянет его, то оно само этим последним давится или тянется. Если кто нажимает пальцем на камень, то и палец его также нажимается камнем. Если лошадь тащит камень, привязанный к канату, то и, обратно (если можно так выразиться), она с равным усилием оттягивается к камню, ибо натянутый канат своею упругостью производит одинаковое усилие на лошадь в сторону камня и на камень в сторону лошади, и насколько этот канат препятствует Движению лошади вперед, настолько же он побуждает движение вперед камня. Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит от силы второго тела в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих тел друг на друга постоянно равны. От таких взаимодействий всегда приходят равные изменения не скоростей, а количеств движения, предполагая, конечно, что тела никаким другим усилиям не подвергаются. Изменения скоростей, происходящие также в противоположные стороны, будут обратно пропорциональны массам тел, ибо количества движения получают равные изменения. Этот закон имеет место и для притяжений, как это будет доказано в поучении. <...>

* В кн.: А, Н. Крылов. Собр тр, т. 7. М -Л., 1936, с. 23-31, 34-37, 39-41. 
1Вводя новое понятие массы как количества материи, Ньютон одновременно указывает и на опытное определение массы через вес. 
2Вводится понятие инерции как физического явления и инертности как свойства всех материальных тел. 
3Здесь Ньютон объясняет условие орбитального движения Луны и искусственных спутников Земли. 
4В этом утверждении и далее, в определениях VI-VIII, встречаются места, представляющие в настоящее время лишь исторический интерес. 
5Ньютон нигде не пользуется понятием ускорения, заменяя его "скоростью, производимой в течение данного времени", подразумевая приращение скорости. 
6Под "ускорительной силой> здесь Ньютон понимает напряженность гравитационного поля (т. е. величину ускорения свободного падения). 
7Ньютон подчеркивает независимость ускорения свободного падения от массы, экспериментально установленную Г. Галилеем. 
8Русским словом натиск переводчик обозначил латинское слово 
9Свой знаменитый опыт с ведром, наполненным водой, Ньютон приводит как пример, доказывающий абсолютный характер ускоренного (вращательного) движения в отличие от равномерного движения, имеющего относительный характер. Как известно, в общей теории относительности это противопоставление ускоренного и равномерного движений частично снимается так называемым принципом эквивалентности. 
10Формулировка второго закона механики, даваемая Ньютоном (АД'= = f &t), остается в силе и в теории относительности, в отличие от другой, общепризнанной формулировки (F=ma). Последний, частный, случай второго закона механики в теории А. Эйнштейна не справедлив.